Regularization and Inverse Spectral Problems for Differential Operators with Distribution Coefficients
نویسندگان
چکیده
In this paper, we consider a class of matrix functions that contains regularization matrices Mirzoev and Shkalikov for differential operators with distribution coefficients order n≥2. We show every function is associated some expression. Moreover, construct the family fixed Furthermore, our results are applied to inverse spectral theory. study new type problems, which consist recovery from data independently matrix. The uniqueness theorems proved problems by Weyl–Yurko discrete data. As examples, cases n=2 n=4 in more detail.
منابع مشابه
Inverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملRegularization Operators for Multidimensional Inverse Problems with Kronecker Product Structure
Regularization operators that penalize derivatives are approximated by Kronecker products. This allows direct regularization of multidimensional first-kind linear integral equations with separable kernels. An example of image deblurring is presented.
متن کاملWindowed Spectral Regularization of Inverse Problems
Regularization is used in order to obtain a reasonable estimate of the solution to an ill-posed inverse problem. One common form of regularization is to use a filter to reduce the influence of components corresponding to small singular values, perhaps using a Tikhonov least squares formulation. In this work, we break the problem into subproblems with narrower bands of singular values using spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11163455